Abstract
Endothelial cell-derived extracellular vesicles (CD31EVs) are a new entity for therapeutic/prognostic purposes. The roles of CD31EVs as mediators of smooth muscle cell (VSMC) dysfunction in type 2 diabetes (T2D) is investigated herein.
We demonstrated that, unlike non-diabetic, diabetic serum-derived-EVs (D-CD31EVs) boosted apoptosis resistance of VSMCs cultured in hyperglycaemic condition. Biochemical analysis revealed that this effect relies on changes in the balance between anti-apoptotic/pro-apoptotic signals: increase of bcl-2 and decrease of bak/bax. D-CD31EV cargo analysis demonstrated that D-CD31EVs are enriched in membrane-bound-platelet-derived-growth-factor-BB (mbPDGF-BB). Thus, we postulated that mbPDGF-BB transfer by D-CD31EVs could account for VSMC resistance to apoptosis. By depleting CD31EVs of PDGF-BB or blocking the PDGF-BB-receptorβ on VSMCs, we demonstrated that mbPDGF-BB contributes to D-CD31EV-mediated bak/bax and bcl-2 levels. Moreover, we found that bak expression is under the control of PDGF-BB-mediated miR-296-5p expression. In fact, while PDGF-BB-treatment recapitulated D-CD31EV-mediated anti-apoptotic program and VSMC resistance to apoptosis, PDGF-BB-depleted CD31EVs failed. D-CD31EVs also increased VSMC migration and recruitment to neovessels, by means of PDGF-BB. Finally, we found that VSMCs, from human atherosclerotic arteries of T2D individuals, express low bak/bax and high bcl-2 and miR-296-5p levels.
This study identifies the mbPDGF-BB in D-CD31EVs as a relevant mediator of diabetes-associated VSMC resistance to apoptosis.
Footnotes
This article contains Supplementary Data online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0371.
- Received March 24, 2017.
- Accepted January 21, 2018.
- © 2018 by the American Diabetes Association.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.